
Privad: Practical Privacy in Online Advertising

Saikat Guha, Bin Cheng, Alexey Reznichenko, Hamed Haddadi, Paul Francis
Max Planck Institute for Software Systems
Kaiserslautern-Saarbruecken, Germany

{sguha,bcheng,areznich,hamed,francis}@mpi-sws.org

ABSTRACT
Online advertising is a major economic force in the Inter-
net today. Today’s deployments, however, erode privacy
and degrade performance as browsers wait for ad net-
works to deliver ads. We present Privad, a practical pri-
vate online advertising system. Privad serves ads from
the endhost; this is attractive from three standpoints —
privacy, profit, and performance. Tracking the user’s pro-
file on their computer and not at a third-party improves
privacy. Better targeting and potentially lower operat-
ing costs can improve profits. And relying more on the
local endhost rather than a distant central third-party im-
proves performance. We have implemented Privad and
deployed it on a small scale. This paper focuses on the
scalability aspects of Privad. It describes the Privad ar-
chitecture and protocols, analyzes its scalability charac-
teristics, and presents measurements that substantiate our
scalability claims.

1. INTRODUCTION
Online advertising is a key economic driver in the

Internet economy. It funds services provided by such
industry giants as Google and Facebook, and helps
pay for data centers and, indirectly, ISPs. Internet
advertisers increasingly work to provide more per-
sonalized advertising. Unfortunately, personalized
online advertising, at least so far, has come at the
price of individual privacy [21] and poor user ex-
perience [23]. And while privacy advocates would
like to put an end to advertising models that vio-
late privacy, aside from a few highly publicized bat-
tles [17], they have had little success with the more
entrenched ad brokers like Google and Yahoo! [12].
Arguably the reason why privacy advocates have
failed is that they offer no viable alternatives. The
deal they offer, privacy or personalization [2, 30], is
not acceptable to the entrenched players. This paper
takes a first stab at providing that alternative.

In this paper, we present a practical private online
advertising system, which we call Privad. Our high-
level goals for Privad are that it:

1. is private enough, and certainly substantially
more private than current systems,

2. is at least as scalable as current systems,
3. targets ads as well as or better than current

systems, and
4. fits within the current business framework for

online advertising.

As these goals suggest, we are looking for a design
that finds a sweet spot between privacy and other
practical aspects of the system (scalability, target-
ing, business model). A key question is, how pri-
vate is private enough? Current advertising systems,
such as Google and Yahoo!, are in a deep archi-
tectural sense not private: they gather information
about users and store it within their data centers.
Users are forced to simply trust them not to do any-
thing bad with the information. For example, there
is little to stop an employee of one of these advertis-
ing companies from determining who is likely to have
certain health problems, and selling this information
to insurance companies [20].

We argue that Privad is considerably more private
than current systems. Privad does not, for instance,
require trust in any single organization. But is it
private enough? There is obviously no single uni-
versal answer to this question. We believe that ulti-
mately it is up to society to decide what is private
enough, and society here tends to be represented
by consumer and privacy advocacy groups like the
Electronic Frontier Foundation (EFF), the Ameri-
can Civil Liberties Union (ACLU), and others [3].
Our strategy, then, is to design and build a system
that is as private as possible while still achieving the
practical goals, and to then see who believes that it
is private enough.

The core idea behind Privad is simple: the user’s
profile is kept on the user’s computer. Deciding what
ads to show, as well as serving the ads, is performed
purely locally by the user’s computer. This is made
possible by pushing a mix of ads to users in advance.
Reports about which ads are viewed or clicked are

1

transmitted in such a way that user privacy is pre-
served while still allowing the advertising network to
detect and defend against click-fraud.

Privad has several benefits over the current adver-
tising model. First, Privad is verifiably private. Not
only is the Privad protocol private by construction,
it admits third-party verifiers that can ascertain that
parties do not deviate from the protocol. This is key
to convincing privacy advocates to endorse Privad,
which we believe will be crucial for deployment. Sec-
ond, serving ads locally eliminates multiple round-
trips to the ad servers before the webpage can be
rendered. Thus, as one might expect, Privad results
in a more interactive browsing experience while re-
ducing the load on the ad servers. And third, we
argue that Privad has the potential for better tar-
geting than online advertising today. This is in part
because Privad has access to substantially more in-
formation, and in part because of privacy guarantees
that should increase the level of personalization that
privacy watchdogs can accept. In improving ad rele-
vance, Privad continues the direction set by Google
that has proven that users value more relevant ads.

One key challenge is incentivizing deployment. Pri-
vad is not aimed for users that today disable ads al-
together. For users that do view, and occasionally
click ads today, deploying requires first that Pri-
vad not degrade user experience in any way. We
can ensure this by only showing ads in the same ad
boxes that are common today (unlike previous ad-
ware, which employed disruptive advertising). Sec-
ond, especially early on there must be some posi-
tive incentive for users to install it. This could be
done through bundling other useful software, shop-
ping discounts, or other incentives. Finally, it re-
quires that privacy advocates (e.g. EFF, ACLU,
and government agencies) endorse Privad. This at
least prevents anti-virus software from actively re-
moving Privad from clients. Ideally, it even leads to
privacy-conscious browser vendors (e.g. Firefox) or
operating systems installing it by default, or by gov-
ernments mandating that existing advertising com-
panies deploy Privad technology.

The contributions of this paper are as follows: It
presents what is to our knowledge the first arguably
practical private advertising system. It describes
the design and implementation of Privad, and gives
microbenchmark performance results for the imple-
mentation. This paper focuses on the scalability
aspects of Privad. While it does provide a brief
overview of Privad’s privacy characteristics, it does
not provide a full analysis of Privad’s privacy. This
can be found in [13]. Our implementation does some
simple user profiling, disseminates ads, runs auc-

tions, displays ads, reports views and clicks, and con-
tains a simple click-fraud defense mechanism. While
we study the scalability of these mechanisms, we do
not study their quality or effectiveness. This is left
for future work.

We readily acknowledge that user profiling is not
the only privacy issue that plagues the Internet, or
even the most important (identity theft comes to
mind). User profiling is, however, an important prob-
lem, and one that is not isolated from other privacy
issues. For instance, arguably the primary motiva-
tion for social networks to gather private and Per-
sonally Identifying Information (PII) is ultimately in
support of advertising. Overall, Privad, along with
its proof-of-concept implementation and pilot de-
ployment, represents an argument that highly-targeted
practical online advertising and good user-privacy
are not mutually exclusive. We hope that this first
stab at a feasible design leads to additional research
on privacy in advertising as well as on privacy in
other aspects of online life.

2. PRIVAD OVERVIEW

2.1 Model
There are five players in Privad: user/client, pub-

lisher, advertiser, broker, and dealer. User, pub-
lisher, advertiser, and broker all have analogs in to-
day’s advertising model, and play the same basic
business roles. Users visit publisher webpages. Ad-

vertisers wish their ads to be shown to users on
those webpages. The broker (e.g. Google) brings
together advertisers, publishers, and users. For each
ad viewed or clicked, the advertiser pays the broker,
and the broker pays the publisher.

There are two key components to privacy in Pri-
vad. First, the task of profiling the user is done at
the user’s computer rather than at the broker. This
is done by client software running on the user’s com-
puter. Second, all communication between the client
and the broker is proxied anonymously by the dealer.
The dealer is run by an organization that is itself
untrusted with user profile information, but is nev-
ertheless unlikely to collude with the broker. This
could for instance be prominent privacy advocacy
groups (e.g. EFF or ACLU) or a government regu-
latory agency. The dealer’s operational costs could
be covered by a special tax levy on the broker.

The dealer serves two roles. For the user the
dealer provides anonymity by hiding the user’s iden-
tity (e.g. IP address) from the broker, but itself
does not learn any profile information about the user
since all messages between the client and broker are
encrypted. Unfortunately, when clients are hidden

2

Figure 1: The Privad architecture

from the broker, the broker is less able to protect
itself against click-fraud. Therefore, the dealer also
helps the broker defend against click-fraud, but in
a way that preserves user privacy. Additionally, the
dealer helps protect against application-level DoS at
the broker by rate-limiting client messages.

2.2 Privad Operation
Figure 1 illustrates an overview of Privad oper-

ation. The client monitors user activity (for in-
stance webpages seen by the user, personal infor-
mation the user inputs into social networking sites,
the contents of emails or chats sessions, and so on)
and profiles both the interests and demographics of
the user. Interests include products or services like
sports.tennis.racketor outdoor.lawn-care. De-
mographics include things like gender, age, salary,
and location.

Although good targeting is one of the main re-
quirements for Privad, we have not shown that this
is the case. As compared to the shallow view into the
behavior of a vast number of users that current bro-
kers like Google have, the Privad client has a much
deeper view into any given user. We suspect that
relatively simple techniques like watching the user’s
shopping activity, scraping the user’s social network
profiles, seeing what applications the user runs or
what music the user listens to, and what websites
the user spends time on, can go a long ways towards
targeting the users interests and demographics. Fu-
ture work will determine if the deeper view of Privad
is enough to match or exceed the broader view.

Advertisers upload ads to the broker, including
the set of interests and demographics targeted by

each ad, and optionally, search or website keywords.
The broker distributes some fraction of these ads to
clients through the dealer. This is done through a
pub-sub mechanism whereby the client subscribes to
a set of ads corresponding to a single interest cate-
gory and a few broad demographics like gender, ge-
ographic area, and language, and the broker delivers
some matching ads. All messages between client and
broker are made anonymous by the dealer, and are
encrypted so that the dealer does not see their con-
tents. If the user has multiple interests, there is a
separate subscription for each interest, and the bro-
ker cannot correlate the separate subscriptions to
the same user. Note that this distribution does not
take into account the full set of demographics of the
user. As a result, the client receives both ads that
are and are not targeted to the user.

Ad auctions determine both which ads are shown
to the user and in what order. In addition to bid in-
formation, ranking is based on both user and global
metrics. User metrics include things like how well
the targeting information matches the user, and the
user’s past interest in similar ads. Global metrics in-
clude the aggregate click-through-rate observed for
the ad, the quality of the advertiser webpage, etc.

When the user browses a website that provides
ad space, or runs an application like a game that
includes ad space, the client selects an ad from the
local database based on keywords or webpage con-
text and displays it in the ad space. A report of this
view is anonymously transmitted to the broker via
the dealer. If the user clicks on the ad, a report of
this click is likewise anonymously transmitted to the
broker. The broker uses these reports to bill adver-
tisers and pay publishers. The broker also forwards
the reports (or summaries) to the advertisers so that
they may better manage their ad campaigns.

Unscrupulous users or clients may launch click-
fraud attacks on publishers, advertisers, or brokers.
Both the broker and dealer are involved in detect-
ing and mitigating these attacks. The mitigation
strategy is for the dealer to suppress reports from
attacking clients. There are two classes of mech-
anisms for identifying attacking clients — by the
dealer alone, and by the broker in conjunction with
the dealer. For instance, the dealer may identify an
attacking client directly when the client transmits
too many reports or subscription requests. Or, the
broker may use statistical approaches (e.g. [15]) to
identify which publishers or advertisers are under
attack, and indicate to the dealer which reports re-
late to these attacks. The dealer then traces these
reports back to the clients responsible. Any clients
associated with a threshold number of attacks are

3

Figure 2: The Client framework

identified as attackers.

2.3 Client Framework
Messages between client and broker are encrypted

so that the dealer cannot see their contents. It is
critical, however, that users, or privacy advocates
operating on behalf of users, are confident that no
private information is being covertly transmitted in
the encrypted message. Towards this end, the Pri-
vad client architecture allows for a reference mon-
itor (Figure 2). The reference monitor framework
allows any third party software trusted by the user
to interpose itself between the client and the exter-
nal world. The reference monitor validates message
contents and performs encryption operations, and
ensures the content of outgoing messages matches
expectations. This software can insure that Privad
is operating according to design. This shifts trust
from the Privad client to the third-party software,
for instance the user’s anti-virus software which, by
definition, is already trusted by the user.

There of course may be multiple competing bro-
kers each with a client on a given user’s computer.
These clients could operate independently of each
other, for instance with each client fully implement-
ing the Privad protocol, scraping webpages, and even
arranging for separate dealers. Alternatively, there
could be some common support in the user’s browser
to handle multiple clients more efficiently, for in-
stance, by sharing a common Privad protocol imple-
mentation and common webpage scraping modules.
Multiple brokers could also share dealers.

3. PRIVAD DETAILS
This section provides details on ad dissemination,

auctions, view/click reporting and click-fraud de-
fense, the reference monitor, and the offloading of
public-key cryptographic operations. It also puts
forth some of the rationale for our design decisions.
These details represent a snapshot of our current
thinking. While reporting, ad dissemination, the ref-
erence monitor, and crypto-offloading are quite sta-

ble, the click-fraud defense, and auctions may easily
evolve as we do more analysis and testing. We pro-
vide them here so as to present a complete argument
for Privad’s viability.

3.1 Ad Dissemination
The most privacy-preserving way to disseminate

ads would be for the broker to transmit all ads to
all clients. In this way, the broker would learn noth-
ing about the clients. In a previous study where
we measured Google search ads [14], we concluded
that there are too many ads and too much ad churn
for this kind of broadcast to be practical. In the
study we observed that the number of impressions
for ads is highly skewed: a small fraction of ads
(10%) garner a disproportionate fraction of impres-
sions (80%). Furthermore, this 10% of ads tend to
be more broadly targeted and therefore of interest
to many users. It may therefore be cost effective
to disseminate only this small fraction of ads to all
users, for instance using a P2P mechanism like Bit-
Torrent. For the remaining 90% of ads, however, a
different approach is needed. Therefore, we design a
privacy-preserving Pub-Sub mechanism between the
broker and client to disseminate ads.

The Pub-Sub channels are defined by a nested
interest category and limited broad demographics
such as geographic region, gender, and language (e.g.
sports.tennis.rackets.Wilson + location.us.-

ny.ithaca + gender.male + language.en). The
interest and demographics are chosen in such a way
that no sensitive information is revealed in the sub-
scriptions, there are a large number of users with
the same subscription (k-anonymity), and yet ac-
ceptable scalability is achieved.

The Pub-Sub exchange consists of a request to join
a channel, followed by a stream of ads being served
to the client (Figure 3). The request is encrypted
with the broker’s public key (B) and transmitted to
the dealer. The request contains the Pub-Sub chan-
nel (chan), and a symmetric key C generated by the
client and used by the broker to encrypt the stream
of ads sent to the client. The dealer generates a re-
quest ID (Rid) unique to the subscription request,
stores a mapping between Rid and the client, and
appends the Rid to the message forwarded to the
broker. The broker attaches the Rid with ads pub-
lished, which the dealer forwards to the associated
client. The broker may set ads to expire after a few
days to ensure freshness.

Each subscription has a different symmetric key
(C), thus preventing the broker from associating mul-
tiple subscriptions from the same user and therefore
building up a profile of the user. Additionally, the

4

Figure 3: Message exchange for Pub-Sub ad dissemination.
Ex(M) represents the encryption of message M under key
x. B is the public key of the broker. C is a symmetric key
generated by the client for only this subscription.

client staggers bursts of subscriptions by adding ran-
dom delays (e.g. when the client starts up) to pre-
vent the broker from correlating them in time and
associating them with the same client.

The broker determines which ads should be sent.
For instance, the broker stops sending ads for an ad-
vertiser when the advertiser nears his budget limit.
Note that not all ads transmitted are appropriate
for the user, and so may not be displayed to the
user. For instance, an ad may be targeted towards
a married person, while the user is single. Because
the subscription does not specify marital status, the
broker sends all ads independent of marital status or
other targeting, and the client filters out those that
do not match. Over time, the broker can estimate
the number of ads that must be sent out for a partic-
ular advertiser to generate a target number of views
and clicks.

3.2 Ad Auctions
Auctions determine which ads are shown to the

user and in what order. The goal of the auction
is to provide a fair marketplace where advertisers
can influence the frequency and position of their ads
through their bids. The challenge, of course, is in
doing so while preserving privacy of the user, as
well as the advertiser’s bid. As a proof of viabil-
ity, we present two auction designs that meet our
requirements. The first design implements a basic
auction. The second design, which is more com-
plex, effectively implements the GSP auction used
by Google today [8] within the confines of the Pri-
vad model. Other privacy-preserving auction de-
signs may be possible, and are for further study.

3.2.1 Design-I: Simple Auctions

The simplest approach is for the broker and client
to conduct auctions at ad dissemination time (Fig-
ure 4). For each Pub-Sub channel, the broker bins
ads by bids and sorts the bins in decreasing order.
Top ranked ads are sent to clients subscribed to that
channel. The client sorts ads within each bin based
on the quality of the match. When an ad box is
encountered, the client picks a channel to show ads
from; the ads are shown in ranked order. The adver-
tiser is charged the amount he bid for each click re-

Figure 4: Design-I: Simple Auctions. For each Pub-Sub
channel, broker bins ads by bid and global click-through rate.
For each bin, client ranks ads by quality of match, filtering
ads that don’t match the user.

port (and a fraction of the bid for each view report).
The broker periodically repeats this process, exclud-
ing advertisers that reach their budget limit. Note
the ranking function may be more complex. For in-
stance, the broker may take into account the aggre-
gate click-through-rate (CTR), for instance, putting
an ad that bids half as much as another ad but is
three times more likely to be clicked in a higher
ranked bin than the other ad.

While this approach is extremely simple and doesn’t
require any changes to the protocol described thus
far, the simple auction is coarse-grained. First, ads
in different channels are not compared even if the
client subscribes to multiple channels. Second, per-
user information is used only to rank ads within one
bin and not across bins. And third, the auction
is volatile; this is inherent with first price auctions
(where a bidder pays exactly what he bid) in a set-
ting where bids can be updated and the outcome
tested quickly. To illustrate: consider advertiser A

bids $2 and is ranked first, while advertiser B bids
$1 and is ranked second. From A’s perspective, if he
lowers his bid to $1.01, he pays 99¢ less without any
change in the auction outcome. A can determine his
most optimal bid by trial and error. At which point,
B can determine by trial and error that by bidding
only 2¢ higher, B is ranked first. This constant trial
and error driven by real financial incentives results
in volatile prices and a constantly changing rank-
ing of ads, which interacts poorly with our goal of
caching the auction result at the client.

3.2.2 Design-II: Combined Auctions

In the combined approach (Figure 5), the broker
conducts the auction in a separate exchange. First,
ads are sent to clients as originally described. The
broker attaches a unique instance ID (Iid) to each
copy of the ad (not shown in figure). For each ad,

5

Figure 5: Design-II: Combined Auctions. Client annotates ads (across all channels) with quality of match, or random number
if the ad doesn’t match the user. Dealer mixes annotations from multiple clients. Broker ranks ads by bid, global click-through
rate, and match quality, and annotates the result with opaque bid information. Dealer slices auction result by client. Client
filters out non-matching ads. Client reports second-price bid on click.

the client computes a coarse score, typically between
1 and 5, as follows: for ads that match the user, the
score reflects the quality of match with 5 signifying
the best possible match. For ads that don’t match
the user, the score is a random number. To rank
ads, the client sends (Iid, score) tuples for all ads in
the client’s database to the dealer. The dealer ag-
gregates and mixes tuples for different clients before
forwarding them to the broker. The broker ranks all
the ads in the message. The ranking is based on bids,
CTR, and client score. Note this ranking contains
all ads from the same client in the correct order,
interwoven with ads for other clients (also in their
correct order), but doesn’t allow the broker to learn
which ads matched a given user, or which channels
a given client is subscribed to. The broker returns
this ranked list to the dealer. The dealer uses the
Iid to slice the list by client and forwards them to
the clients. The client discards the ads that do not
match the user, and stores the rest in ranked order.
Note that the entire exchange is unencrypted; since
Iids are single-use, they do not leak ad information
to the dealer.

The issue of volatility is solved using second-price
auctions. In second-price auctions, each bidder is
charged the next highest bid. Thus the highest bid-
der pays the second-highest bid, second-highest bid-
der pays third-highest bid, and so on until the lowest
bidder that pays some minimum bid (typically 1¢).
The second-price outcome is identical to the steady
state behavior of the first-price auction without the
associated volatility. However, a straightforward ap-
plication of second-price auctions at the broker does
not work because the broker does not know which
ads are from the same client, much less which ads
will be discarded as they do not match the user.

Second-Price Auctions. To perform second-

price auctions, the broker encrypts the bid informa-
tion with a key known only to the broker and sends
it along with the ad. When a set of ads are chosen
to be shown to the user, the client copies the en-
crypted bid information from ad n+1 to ad n. This
encrypted bid information is sent as part of the click
report, which the broker decrypts to determine what
the advertiser should be charged. Second-price bid
information is not sent for view reports for privacy
reasons; see [13] for details and a privacy analysis.

Overall, the combined auction effectively dupli-
cates the GSP auction used by Google [8] without
sacrificing client or bid privacy.

3.3 View/Click Reporting
Ad views and clicks, as well as other ad-initiated

user activity (purchase, registration, etc.) needs to
be reported to the broker. Each report contains the
type of event (view, click, etc.), as well as the Ad
ID (Aid) and Publisher ID (Pid). The Aid uniquely
identifies the ad, and the Pid identifies the website
or webpage on which the ad was displayed. If the ad
was shown through some other means (within the
GUI of an application, or as ad placement within a
virtual reality game), the Pid identifies this.

As with the subscription message, the report is
encrypted with a public key belonging to the broker
and transmitted to the dealer (Figure 6). To as-
sist the broker in defending against click-fraud, the
dealer attaches a unique report ID (Rid) to the mes-
sage, and briefly stores the mapping of Rid to client.
As before, if the client has multiple reports to send
at once, for instance because multiple ads appeared
on the same web page, the client staggers them by
adding random delays to prevent the broker from
correlating them.

3.4 Click-Fraud Defense

6

Figure 6: Message exchange for view/click reporting and
blocking click-fraud. B is the public key of the broker. Aid

identifies the ad. Pid identifies publisher website or applica-
tion where the ad was shown. For second-price auctions, the
opaque auction result is included. Rid uniquely identifies the
report at the dealer.

Neither Privad nor current brokers have a silver
bullet against click-fraud. We provide a basic mech-
anism for anonymously identifying defrauding clients.
When the broker detects that click-fraud is happen-
ing (either on an advertiser or publisher), it notifies
the dealer of the Rid of reports related to the ad-
vertiser or publisher. If the dealer receives a thresh-
old number of notifications for a given client, then
that client’s subsequent reports are tagged as suspi-
cious. The dealer can also itself monitor clients to
see if they have an unusually high volume of views
or clicks, and tag them accordingly.

Detecting click-fraud at the broker will require a
variety of techniques that will evolve over time as an
arms race between broker and attacker. These tech-
niques include keeping historical statistics on click
and view volumes and looking for anomalies, build-
ing honey farms that attract and identify click-fraud
malware, and dealers sharing black-lists of attacking
clients. One interesting technique that we have de-
signed is what we call a “bait ad”: a kind of captcha
for ads. Bait ads contain the targeting information
of one ad, but the text of a very different ad. If a
click-fraud is suspected, the broker can start sending
out some bait ads. An unusually high rate of clicks
on bait ads helps verify that an attack is underway
and helps identify the fraudsters. A more detailed
description of bait ads and other click-fraud detec-
tion mechanisms can be found in [13].

3.5 Reference Monitor
Table 1 lists the complete API exposed by the

reference monitor. The client uses the monitor’s
Encrypt function to encrypt all messages. Addi-
tionally, the client uses the monitor’s GenSymmet-
ricKey functions to generate symmetric keys for
subscribe messages. The reference monitor validates
message contents to ensure the client does not leak
sensitive profile attributes. Additionally, the moni-
tor ensures that no two subscribe messages contain
the same key, and that the keys were generated using
the functions provided. By having the monitor gen-
erate keys and perform the encryption we reduce the

Crypto Operations
Encrypt(Msg, PubKey)

Encrypts Msg with public-key PubKey.
GenSymmetricKey()

Generates a new symmetric key.
GenAsymmetricKeypair()

Generates a public-private keypair.

Network Operations
Send(Msg, Dealer)

Sends message Msg to dealer Dealer.
OnRecv(Handler)

Registers a handler for incoming messages.

Table 1: Reference monitor API

possibility of the client passing information covertly
to the broker (e.g. through random bits in generated
keys, or through the randomized padding in the en-
crypted message).

The browser sandbox allows only the reference
monitor to perform network I/O. The client uses
the monitor’s Send function to send messages. The
monitor ensures the recipient is an authorized dealer,
and that any encrypted information is a result of a
recent call to Encrypt. Finally, the monitor is al-
lowed to arbitrarily delay messages or add jitter to
further reduce the possibility of the client covertly
sending information by using timing as a covert chan-
nel. For this reason the Privad protocol is designed
to be delay tolerant — all operations are asynchronous,
and no message requires an immediate response.

The reference monitor API is designed to be ex-
tremely small and simple so that correctness can be
verified manually. We envision reference monitors
will be open-source — created by privacy-advocates,
anti-virus vendors, or browser vendors, and be veri-
fied by one of the others.

3.6 Offloading Public-Key Operations
We present an optimization to Privad that reduces

broker overhead by leveraging idle clients to perform
pubic-key operations. Figure 7 illustrates this of-

fload protocol. Idle clients (O1 and O2) generate a
public-private key pair. The public key is sent to
the broker. The broker mixes these keys. A client C

that wishes to send a message (M) to the broker first
requests two offload keys through different dealers.
These keys are for this message only; the client must
request additional keys for another message. The
client encrypts M with the two offload keys: thus
if the keys are K1 and K2 the encrypted message
is EK1(EK2(M)). The client sends the encrypted

7

From To Message

1 Client O1 Broker K1
2 Client O2 Broker K2
3 Broker Client C K1

(request-response via D1)
4 Broker Client C (via D2) K2
5 Client C Broker (via D2) EK1(EK2(M)), H(M)
6 Broker Client O1 EK1(EK2(M))
7 Client O1 Broker EK2(M)
8 Broker Client O2 EK2(M)
9 Client O2 Broker M

Figure 7: Offloading public-key operations to idle clients.
K1 and K2 are public-keys created by clients O1 and O2
respectively. Ex(M) represents the encryption of M under
key x, and H(M) represents a cryptographic hash of M . At
the end of the exchange, broker learns M without performing
any public-key operations; clients O1, O2 and broker do not
learn identity of client C; dealers D1, D2 do not learn M .

message and a hash of the original message (H(M))
through the dealer to the broker. The broker sends
the encrypted message to O1, the client that holds
the private key for K1; the client responds with the
decrypted result (EK2(M)). The broker then sends
the message to O2, which responds with the original
plain-text M . The broker validates the decryption
by computing the hash of M and comparing it to
the value sent by the client.

At the completion of the above exchange, the bro-
ker learns M without having performed any public-
key operations. Instead, the broker needs only ver-
ify the hash, which is significantly faster. As before,
the dealer protects C’s identity from the broker (as
well as from O2). Note O2 cannot target a partic-
ular client since the broker mixes keys. Indeed, O2
cannot learn anything the (untrusted) broker can-
not learn thus preserving the privacy properties of
the Privad protocol without offload. Note also that
even though the keys are sent in the clear through
the dealers, a single dealer cannot mount a man-
in-the-middle (MITM) attack since the message is
encrypted with two keys. The typical solution to
MITM involving certificates doesn’t apply since ma-
licious dealers could arrange to get their keys certi-
fied by masquerading as a legitimate client. Finally,
note that the broker still cannot link different mes-
sages from the same client since the client requests

a new pair of offload keys for each message, and the
broker cannot link multiple requests for offload keys
from the same client. For a thorough privacy analy-
sis of the offload protocol see [13].

4. IN BRIEF: USER PRIVACY
In this section, we provide a high-level overview

of the privacy properties of Privad. A detailed se-
curity analysis can be found at [13]. Of the sys-
tem players (user/client, broker, dealer, publisher,
and advertiser), we are primarily interested in user
privacy. There are also advertiser privacy concerns
(targeting, bidding, and budget information), but
due to lack of space they are not discussed here.

Broadly speaking, the user interacts with pub-
lishers, the broker, and advertisers. Compared to
today’s advertising systems, Privad changes noth-
ing about how the user interacts with the publisher.
Any advertising system with fine-grained targeting,
including Privad, can however effect how the user in-
teracts with the advertiser. In particular, when the
user clicks on a finely-targeted ad, the advertiser po-
tentially knows a great deal about the user. Even if
the user uses a web proxy, thus hiding its IP ad-
dress, the knowledge provided by targeting can be
exploited in interactions with the advertiser. This
can be mitigated somewhat by limiting the gran-
ularity of targeting. While it appears possible for
Privad to provide user anonymity and prevent this
sort of exploitation [13], space prevents discussion of
it in this paper. The user privacy analysis provided
here, then, is limited to user interactions with the
broker.

Privad provides the user with anonymity: no in-
formation learned about a user can be associated
with the user’s personal identity, either through in-
ternal or external means. While this isn’t the only
possible definition of privacy, nor the strongest [4],
we believe that it is a level of privacy that would
satisfy most users. More to the point, we hope and
expect that it will satisfy privacy advocacy groups,
and we are currently in the process of discussing Pri-
vad with some of them.

Privad provides user anonymity through three ba-
sic techniques. First, no Personal Identifying In-
formation (PII) other than IP address is explicitly
leaked by the client. This is validated by the ref-
erence monitor. Second, the dealer, which knows
the IP address, has no access to any user informa-
tion. Likewise the broker, who has access to user
information, does not know the IP address. Finally,
the individual bits of user information that are pro-
vided to the broker cannot be linked together. This
prevents the broker from compiling a complete user

8

profile, which effectively distinguishes a single user,
and then using external means to identify the user.

Privad does not protect against some threats. While
it does not require trust in either the dealer or the
broker, it does not protect against collusion between
the broker and the dealer. If this is considered too
great a threat, then additional dealers can be added
in such a way that collusion is required between all
dealers and the broker [13]. Privad does not protect
against malware running on the client. While Pri-
vad makes it somewhat easier for malware to gather
user information (i.e. by looking at the profile),
it does not fundamentally alter the ability of mal-
ware to gather private information. Privad does re-
quire trust in the reference monitor, which sees all
information that passes between the client and the
dealer/broker. The role of the monitor, however, is
limited, and its operation is simple. Therefore, it is
expected that the security properties of the monitor
can be verified by hand.

5. IMPLEMENTATION
We have implemented the full Privad system. The

system comprises a client and reference monitor im-
plemented as a 154KB addon1 for the Firefox web
browser, a dealer, and a broker. The client, dealer,
and broker are all written in Java. We use the
Google Web Toolkit (GWT) [11] to translate the
Java code for the client into Javascript that is then
executed by the browser. In all, our implementation
consists of 8.4K lines of Java code with the client,
broker, and dealer accounting for 4.3K, 800, and 300
lines respectively. The remaining code includes 2.4K
lines of RPC code, interface declarations and utility
methods shared across the three components.

The client implements the combined auction mech-
anism described in Section 3.2.2, and the offload op-
timization described in Section 3.6 in addition to the
core Privad mechanisms (user profiling, ad dissemi-
nation, reports). The monitor is a proof-of-concept
implementation that performs the encryption and
network I/O, but does not validate message con-
tents. The dealer and broker implement all the nec-
essary mechanisms, but support only the simplest
threshold-based click-fraud detection mechanism.

The monitor is written in Javascript. It uses the
open-source pidCrypt Javascript library [28] for per-
forming cryptographic operations. We use RSA with
1024-bit keys for public-key operations, and AES
with 128-bit keys for symmetric-key operations; ran-
domized padding it used to defend against dictio-
nary attacks. For public-key encrypted messages, as
is standard practice, the message is encrypted with

1http://adresearch.mpi-sws.org/addon.html

a random symmetric-key, and the symmetric-key is
encrypted with the public-key. For the offload mech-
anism, only the public-key decryption is offloaded;
once the symmetric key is recovered, the broker fin-
ishes decrypting the message.

Platform choice. We chose to implement the
client as a browser addon to enable us to scrape
highly-dynamic AJAX web applications, which would
otherwise be impossible from a standalone daemon
or local browser proxy perspective. While browser
addons are OS independent, they are, however, browser
dependent. The GWT compiler simplifies the prob-
lem significantly by translating browser-independent
high-level code (in Java) to browser-specific Javascript;
we needed to write less than 450 lines of Firefox-
specific glue code. Finally, we were concerned about
Javascript performance for cryptographic operations.
While browser addons can include native code, as we
show later, modern Javascript engines perform suf-
ficiently well for this to be a non-issue.

All client-dealer communication is performed over
HTTP to accommodate clients behind firewalls and
proxies. We use a JSON-based RPC framework,
which is more compact than XML RPC. The bro-
ker and dealer are written as Java servlets, hosted
by the Jetty webserver [27]. The broker uses stan-
dard Java libraries for all cryptographic operations.

User profiling. The client scrapes demographic
information from the user’s Facebook profile, and
long-term interests from the user’s Google Ad prefer-
ences2 (which are automatically populated by Google
based on the user’s browsing habits). These web-
sites present structured data that is easy to scrape.
We choose these two websites to illustrate how the
client can integrate with existing profiling services.
We are currently in the process of implementing on-
line shopping related profiling.

Test Ads. Since we lack real advertisers to test
our system with, we currently scrape ads from Google’s
ad boxes and inject them into our system. If the user
clicks on a Google ad (or if the ad is shown more
than some threshold number of times) the client
constructs a new Privad ad with the same contents,
which it then sends to the broker to publish to other
clients. The client synthesizes targeting and bid in-
formation since the scraped ad lacks both. The new
ad is targeted to users that match some randomly
selected subset of profile attributes of the user in-
jecting the ad. Bids are currently random.

Showing Ads. Since we lack real publishers, we
co-opt existing Google ad boxes to show Privad ads
(which are re-injected Google ads). In order to not
interrupt Google’s business, we ensure that clicking

2http://www.google.com/ads/preferences/view

9

on a Privad ad results in the same notification to
Google as would have been sent had the original user
that injected the ad clicked it.

Offload. The offload mechanism reduces broker
load at the cost of client load, and must therefore be
carefully balanced to not degrade the user’s brows-
ing experience. To this end, the client performs of-
floaded decryptions only when there is no user activ-
ity (e.g. mouse movements). We plan to additionally
inhibit offload processing when the client computer
is running on battery power, or is heavily loaded.
To allow messages to be processed even when the
offload client is unable to comply, the client gener-
ating the encrypted message encrypts it separately
with the offload keys as well as the broker’s pub-
lic key as a fallback. The broker waits 2 minutes
for offload clients to decrypt the message before per-
forming the decryption itself.

5.1 Challenges
The primary implementation challenge is the ef-

fort required to scrape pages. Our implementation of
the scraping modules for Facebook and Google Ad
preferences comprises fully 20% of the client code.
Adding additional websites, as well as keeping the
modules updated with changes to websites is likely
to require significant effort. Since webpage scraping
is useful to a number of other addons and research
projects, in the short-term we plan to crowd-source
the development and maintenance of scrapers thus
distributing the effort required. In the long-term,
however, we envision designing tools that can gen-
erate much of the scraping code.

The second implementation challenge we face is
defining the attribute hierarchy and mapping scraped
information onto it. Currently we define the hier-
archy as the superset of the information scraped
— 9 demographic attributes (from Facebook) and
602 nested interest-based attributes (from Google)
— which makes the task of mapping scraped infor-
mation trivial. We cannot continue to do so, how-
ever, as we add more websites; Amazon alone, for
instance, has 107K nested product categories. Since
websites categories are slow-changing, however, one
option is to generate a static mapping once and up-
date that mapping as the website changes.

5.2 Pilot Deployment
We have deployed Privad with a small group of

users comprised primarily of friends and family. The
primary purpose of the deployment is convincing
ourselves that Privad does not negatively impact
users’ browsing experience. As of this writing, 71
unique users (39% still active) have installed our ad-

don based on anonymized status reports. Most users
that uninstalled the addon did so within a day of
installing. We believe this is because the addon cur-
rently offers little of value to the user. We are in the
process of bundling other useful functionality to ad-
dress this issue. We have not received any negative
feedback from users3.

Usage statistics from our deployment provide little
insight — our userbase consists only of beta testers,
and likely has a tech savvy bias owing to their ability
to install a Firefox plugin. Nevertheless, we present
some aggregate statistics for completeness. User pro-
files contained between 1 and 15 items (6 on av-
erage). Interestingly, 10 users deleted some infor-
mation from their Facebook profile and Google Ad
preferences page after, we believe, the addon promi-
nently displayed to them the source of specific pro-
file information. In the one month since we deployed
Privad, the addon injected 165 unique ads scraped
from Google. These resulted in a total of 1023 view
reports, and 48 click reports. Note, however, the
number of clicks is deceptively higher than we ex-
pected. We believe it is a result of our addon not tak-
ing the language of the ad into account; as a result,
a number of Chinese and German ads were shown to
a largely English-speaking audience who, no doubt,
clicked to investigate. The broker was able to suc-
cessfully offload 998 decryptions to clients (89% of
those attempted); the rest failed due to clients going
offline and were handled instead by the broker.

6. EVALUATION
We use microbenchmarks to evaluate the scalabil-

ity characteristics of our system. We lack datasets
to perform meaningful macrobenchmarks or compar-
ison studies.

6.1 Client Microbenchmarks
Eliminating Network RTTs. We first bench-

mark how Privad improves web browsing by elim-
inating network round-trips in the critical path of
rendering webpages. Figure 8 compares Privad per-
formance to existing ad networks. The figure com-
pares the delay added for both populating ad boxes,
and for fetching the advertiser webpage after a click.
For Privad, we measured the time taken to populate
ad boxes as we scale the number of ads cached in the
client database by three orders of magnitude from
1K to 1M (shown as whiskers in the figure). Typi-
cally, however, we expect this number to be between
10K and 100K (shown as the box). For existing ad
networks, we measure the time taken to fetch ad
content, and the time taken to report a click and

3or, for that matter, positive feedback

10

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Populate Ad Box
(synchronous)

Follow Ad Click
(synchronous)

D
el

ay
 (

m
s)

Client Ad
DB size:

1M

100K
10K

Privad: <1ms

D

A

Y

G

M

Privad
Doubleclick

AOL (AdTech)
Yahoo (YieldManager)

Google (AdWords)
Microsoft (Atlas)

Figure 8: Privad eliminates network RTTs for showing ads,
and reporting clicks. Whiskers for Privad show performance
as the number of ads in the client’s database scales to 1 mil-
lion. Whiskers and boxes for existing ad networks show min-
imum and maximum latencies, and quartiles.

be redirected to the advertiser webpage. Since the
tests are conducted from a German academic net-
work, for fairness we measure performance only for
popular German sites (based on Alexa rankings for
websites ending in .de). We found existing ad net-
works use European servers for these websites, thus
eliminating any unnecessarily cross-Atlantic round-
trips. For existing networks, whiskers in the figure
represent minimum and maximum delays encoun-
tered on 20 websites, and the boxes represents the
first and third quartiles.

As one might expect, Privad outperforms exist-
ing networks since displaying ads requires only local
disk access. In our implementation, the client stores
ads in a SQLite database [5] with the necessary in-
dexes to speed up the task of filtering ads based on
keywords or webpage context. Even with 100K ads,
which is an amount likely at the higher end of the
number of ads matching a user’s profile, Privad can
populate ad boxes in 31ms. In existing networks,
we found the delay was dominated by the ad se-
lection process, by which we mean the time taken
to fetch the generated iFrame object or Javascript
that contains the URL of the ad content; download-
ing the ad content (up to 30kB for flash ads) took
less than 2ms. Doubleclick, which to our knowledge
does not perform demographic or context sensitive
advertising, took 129ms in the median case, and
Google, which does perform context sensitive adver-
tising, took 670ms. Yahoo demonstrated bimodal
behavior somewhat correlated with the type of ad
(image vs. flash) ultimately served. We consistently
noticed exceptionally high delays (several seconds)
for Microsoft’s ad network which, aside from ruling
out DNS or packet-loss issues, we cannot explain.

Overall, considering the prototype quality of our im-
plementation, there appears to be much headroom
for adding more complex ad selection strategies in
Privad while still improving on the performance of
existing ad networks.

With regards to reporting clicks, existing ad net-
works must perform a synchronous redirect where
the browser first informs the ad network of the click
before being redirected to the advertiser webpage.
Some ad networks perform multiple redirects. Google,
for instance, performs two synchronous redirects: first
to a Google domain, and then to a Doubleclick do-
main, before redirecting to the advertiser; in the
process, the browser sends both the Google cookie,
and the Doubleclick cookie. Doubleclick performs
three redirects. Synchronous redirects added be-
tween 100–200 ms before the advertiser website was
even contacted. This represents up to 5% of the time
considered the maximum threshold of acceptability
for retail web page response times [1]. In contrast,
Privad has virtually zero delay between the user
clicking and the browser contacting the advertiser
webpage since click reports are sent asynchronously
in the background.

Public-Key Operations. Next, we benchmark
public key operations in the client with an eye to-
wards its impact on the user’s browsing experience.
Our key concern is that the Javascript execution
model is single-threaded, and Firefox has no per-
formance isolation between Javascript code in web-
pages, addons, and even that used to implement
browser’s user interface. As a result, a long running
operation can cause the browser to freeze for the
duration. Fortunately, as we show in Figure 9(a),
overheads are low enough that they can be masked
by deferring computations to brief periods of inac-
tivity. In the figure, we compare the performance
for three classes of clients: workstation, laptop, and
netbooks. The workstation and laptop have a 3GHz
and 2.1GHz Intel Core2 processor respectively, al-
though Firefox, being single threaded, is limited to
a single core. The netbook has a 1.6GHz single-core
Intel Atom processor. We benchmark Firefox v3.5
that includes JIT optimizations for Javascript.

As shown in the figure, the workstation can con-
struct subscription and view/click reports in 68ms.
This includes one symmetric-key operation and three
public-key encryptions (one with broker key, and
two with offload keys); it takes 39ms with offload
disabled. The laptop and netbook take 85ms and
160ms respectively. Since subscriptions and reports
are generated asynchronously, in practice the over-
head is imperceptible to the user.

Performing the offloaded decryption on behalf of

11

10ms

100ms

1s

10s

100s

Subscribe/Report
(asynchronous)

Offload
(when idle)

Key Generation
(only once)

T
im

e
(lo

gs
ca

le
)

Netbook
Laptop

Workstation

(a) Client crypto overhead

 100

 1000

 10000

 100 1000 10000

P
ro

ce
ss

ed
 (

lo
gs

ca
le

)

Requests per second per core (logscale)

with offload
without offload

(b) Broker offload optimization

10K

20K

30K

40K

50K

60K

70K

80K

90K

100K

110K

0K 5K 10K 15K 20K 25K 30K

A
ds

 a
uc

tio
ne

d
pe

r
se

co
nd

Ads per auction

cache encrypted bid
re-encrypt bid

(c) Broker auction performance

Figure 9: (a) Client overheads of public-key operations in Javascript are low enough to be masked with asynchronous reports,
and idle-time processing. Privad protocol is designed with this in mind. (b) Offloading public-key operations improves broker
performance significantly. (c) The envelop of auction performance at broker depending on privacy requirements.

the broker, however, is more expensive. The pri-
mary reason is that for RSA, public-key decryption
is a factor of 10 more expensive than encryption (for
our choice of 1024-bit keys). The workstation and
laptop take around 0.5s to complete an offloaded de-
cryption, and the netbook takes around 2s. Note,
the broker can decrypt the same message in 3.6ms
in Java (125x faster). Therefore by offloading to ten
million idle clients, the broker can potentially boost
its effective processing capability by about 80K cores
while saving on datacenter and cooling costs. The
client also incurs a one-time cost of generating the
public-private key pair used for offload. Since gener-
ating public keys requires a search for large primes,
it takes significantly longer (on average, 14s on the
workstation, 80s on the netbook). While we cur-
rently mask this by waiting for 15 minutes of inac-
tivity, using native code in the client or generating
the key pair once at the broker and securely trans-
mitting it to the client is an option.

6.2 Broker Microbenchmarks
We benchmark the broker on a dual-core 64-bit

3GHz Dell Optiplex 760 workstation with 4GB RAM.
We use the loopback network interface to eliminate
network bottlenecks. We limit the JVM to a single-
core and 1GB memory to isolate the broker from the
benchmark tool. In developing the broker, we opted
to reuse the text-based JSON RPC framework for
broker-dealer messages (incorrectly) assuming that
cryptographic costs would dwarf RPC overheads; in
retrospect this was a mistake. With the offload opti-
mization we reached a point where RPC serialization
and deserialization accounts for 43% of processing
time. Consequently, the numbers we report below
are lower bounds. We also report performance with-
out RPC overhead for an upper bound.

Subscribe/Report. We first focus on the per-
formance of subscribe and report messages at the

broker since they involve public-key operations. Fig-
ure 9(b) plots broker performance for subscribe and
report messages, with and without the offload op-
timization. Messages are typically 750 bytes long.
Without offload, as expected, performance is bottle-
necked by RSA decryptions at around 280 decryp-
tions per second (on a single-core). Offloading de-
cryptions improves performance by a factor of 20.
Beyond 6K requests per second, the bottleneck is
primarily due to RPC overhead. The broker can oth-
erwise perform 33K raw AES decryptions per second
once the offload client recovers the AES key. Note
with hardware AES support this limit can be in-
creased still further.

Subscribe and report messages additionally affect
state at the broker. Our implementation can han-
dle 1.8M subscriptions before exhausting the allot-
ted 1GB memory. Reports do not consume memory
since they modify bookkeeping state in-place. They
do, however, consume disk space (24 bytes per log
message) but only for click-reports. Given the typi-
cally low ratio of clicks to views, disk throughput or
capacity is not a big concern.

Publish. Our broker can publish 8.5K ads per
second (734M per day). This number almost dou-
bles if RPC overhead is excluded, at which point
performance is bottlenecked by the cost of encrypt-
ing the ad with the client-supplied AES key.

Auction. Processing auctions presents a trade-
off. First, dealer decides the number of ads that
the broker must rank. The more ads in a message,
the better the privacy properties of the mix, while
the fewer ads in the message, the faster the sort.
Second, the broker decides whether or not to cache
the opaque (encrypted) bid information across auc-
tions. Not recomputing the opaque bid improved
performance, but has the potential to leak informa-
tion to the dealer if advertiser bids are unique. Fig-
ure 9(c) plots broker performance as we vary the

12

number of ads in the auction, and enable or disable
opaque bid caching. With cached opaque bids, sort-
ing dominates processing, with a 30% throughput
drop for large auctions. AES encryption costs domi-
nate when the opaque bids are regenerated, lowering
auction throughput to around 30K ads per second.
In either case, since auction throughput exceeds that
of ads published, it is not a scalability concern.

For both publish and auction messages, we found
performance does not depend on the number of sub-
scriptions or unique ads since all lookups are O(1).
Note our broker keeps all ads in memory; in reality,
ads will be stored in a database and cached at the
broker, which could result in different bottlenecks.

6.3 Dealer Microbenchmarks
We benchmarked the dealer on the same hardware

as the broker. Dealer performance is bottlenecked
by the number of client HTTP connections. Clients
poll at 30s intervals (configurable) to retrieve ads
published for them. Our dealer can handle 6.5K con-
nections per second; thus we estimate a single dealer
instance can support nearly 200K online clients. Our
dealer can additionally forward 15K messages per
second in either direction (clients to broker, or vice
versa). This is far lower than we were expecting.
The bottleneck is the text-based RPC protocol, the
parser for which saturates at 7MBps per core.

6.4 Evaluation Summary
Overall, Privad mechanisms appear to scale to

large numbers of clients and ads. We have been able
to optimize all parts of the system to a point where
our original choice of RPC protocol is now the lim-
iting bottleneck. The next step in scaling then is to
explore more streamlined wire protocols.

Microbenchmarks, not matter how comprehensive,
give only a partial answer — that no single aspect of
our system or implementation fundamentally limits
scalability. We leave many questions unanswered.
What is the overhead of publishing non-matching
ads for real user profiles and targeting information?
How many ads and for how long should they be
cached at the client? How much past history do
the dealer and broker need to remember to defend
against click-fraud? How does better targeting af-
fect the ad economy? We cannot answer these ques-
tions without public datasets for Internet scale ad-
vertising systems. Data about targeting and bid
information for ads, volume and rate of change of
ads, user profiles and view/click traces, and real at-
tacks and their economic impact would go a long
way towards answering these questions. Neverthe-
less, given our prototype implementation and mi-

crobenchmarks, we believe the basic scalability ar-
gument for Privad is on a solid footing.

7. RELATED WORK
There is very little past work on the design of pri-

vate advertising systems, and what work there is
tends to focus on isolated problems rather a com-
plete system like Privad. Juels [18] focuses on the
private ad dissemination problem. Juels opts for a
distributed mixnet design. The dealer in Privad, in
contrast, is simpler and more scalable; Privad shares
this insight with [26], where Ringberg et al. use a
dealer-like mechanism to solve a different problem
— scalable private data aggregation. Furthermore,
unlike an anonymizing mixnet, the dealer is in posi-
tion to help the broker defend against click-fraud. In
Databank [22], the authors propose a radically new
economic model where advertisers pay clients to ac-
cess their private information, and use market incen-
tives to preserve privacy. Privad provides stronger
privacy guarantees while operating within the exist-
ing economic model.

Existing research on defending against click-fraud
is complementary to Privad. Juels et al. [19] propose
the notion of “Premium Clicks” for authenticated
users; this is easily done at the dealer. It can addi-
tionally be combined with robot detection through
activity tacking [25] and IP blacklisting [16]. At the
same time, the broker can use the statistical learning
techniques proposed in [15] unchanged.

Auctions are another area where past work is largely
complementary to Privad. In general, however, mak-
ing these auctions private is not straightforward, as
illustrated by our construction that adapts GSP auc-
tions [8]. Nevertheless, we believe principles behind
Hybrid auctions [10], Combinatorial auctions [29]
and auctions with frequency-capping [9] can be in-
corporated in Privad.

Preserving privacy in general is an area of ac-
tive research. Private Information Retrieval enables
querying a database without letting the database
learn what was queried. [24] presents a survey. As
with Juels’ ad dissemination system, these tend to be
overkill, scale less well, and make click-fraud preven-
tion impossible. Differential Privacy [7] allows sta-
tistical databases to be mined for aggregate statistics
without compromising an individual’s data in the
database. TOR [6] protects user privacy on the web.
All three lines of research target general problems,
and as a result, strive to provide privacy guarantees
that hold in the broadest of settings. By restricting
the problem domain to online advertising with well-
defined players, we are able to construct a simpler
and more scalable solution.

13

8. SUMMARY AND FUTURE DIRECTIONS
This paper describes a practical private advertis-

ing system, Privad, which attempts to provide sub-
stantially better privacy while still fitting into to-
day’s advertising business model. There are many
major components to such a system: ad delivery and
reporting, click fraud defense, user profiling, adver-
tiser auctions, and post-click anonymization. While
we have designs and detailed privacy analysis for all
of these components, we have solid performance re-
sults only on the ad delivery and reporting compo-
nents, and even here we have not tested the system
to anywhere near scale. The rest of the system still
requires substantial experimentation, much of which
can only be done with either real users or real trace
data (i.e. from existing advertising systems). Our
next steps, then, are to do this experimentation, as
well start a dialogue with privacy advocacy groups to
better understand if our privacy is “good enough”.

9. REFERENCES
[1] Akamai Technologies, Inc. Akamai and Jupiter

Research Identify ‘4 Seconds’ as the New Threshold of
Acceptability for Retail Web Page Response Times.
http://tinyurl.com/ydymfs, Nov. 2006.

[2] R. Baden, A. Bender, D. Starin, N. Spring, and
B. Bhattacharjee. Persona: An Online Social Network
with User-Defined Privacy. In Proceedings of the 2009
Conference of the Special Interest Group on Data
Communication (SIGCOMM), Barcelona, Spain, Aug.
2009.

[3] J. Chester, S. Grant, J. Kelsey, J. Simpson, L. Tien,
M. Ngo, B. Givens, E. Hendricks, A. Fazlullah, and
P. Dixon. Letter to the House Committee on Energy
and Commerce. http://tinyurl.com/y85h98g, Sept.
2009.

[4] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private Information Retrieval. Journal of the ACM,
45:965–981, Nov. 1998.

[5] D. Richard Hipp and Dan Kennedy and Shane
Harrelson and Christian Werner. SQLite Home Page.
http://www.sqlite.org.

[6] R. Dingledine, N. Mathewson, and P. Syverson. TOR:
The Second-Generation Onion Router. In Proceedings
of the 13th USENIX Security Symposium (Security
’04), San Deigo, CA, Aug. 2004.

[7] C. Dwork. Differential Privacy: A Survey of Results.
Theory and Applications of Models of Computation,
4978:1–19, 2008.

[8] B. Edelman, M. Benjamin, and M. Schwarz. Internet
Advertising and the Generalized Second-Price Auction:
Selling Billions of Dollars Worth of Keywords.
American Economic Review, 97(1):242–259, Mar. 2007.

[9] A. Farahat. Privacy Preserving Frequency Capping in
Internet Banner Advertising. In Proceedings of the
18th International Conference on World Wide Web
(WWW ’09), pages 1147–1148, Madrid, Spain, 2009.

[10] A. Goel and K. Munagala. Hybrid Keyword Search
Auctions. In Proceedings of the 18th International
Conference on World Wide Web (WWW ’09), pages
221–230, Madrid, Spain, 2009.

[11] Google Inc. Google Web Toolkit.
http://code.google.com/webtoolkit.

[12] G. Gross. FTC Sticks With Online Advertising
Self-regulation. IDG News Service, Feb. 2009.

[13] S. Guha, B. Cheng, A. Reznichenko, H. Haddadi, and
P. Francis. Privad: Rearchitecting Online Advertising
for Privacy. Technical Report TR-2009-4, Max Planck
Institute for Software Systems, Kaiserslautern-
Saarbrücken, Germany, 2009.
http://mpi-sws.org/tr/2009-004.pdf.

[14] S. Guha, A. Reznichenko, H. Haddadi, and P. Francis.
Serving Ads from localhost for Performance, Privacy,
and Profit. In Proceedings of the 8th Workshop on Hot
Topics in Networks (HotNets ’09), New York, NY,
Oct. 2009.

[15] N. Immorlica, K. Jain, M. Mahdian, and K. Talwar.
Click Fraud Resistant Methods for Learning
Click-Through Rates. In Proceedings of the 1st
International Workshop on Internet and Network
Economics (WINE ’05), Hong Kong, China, Dec. 2005.

[16] B. J. Jansen. Adversarial Information Retrieval
Aspects of Sponsored Search. In Proceedings of the 2nd
Workshop on Adversarial Information Retrieval on the
Web (AIRWeb ’06), Seattle, WA, 2006.

[17] A. Jesdanun. Ad Targeting Based on ISP Tracking
Now in Doubt. Associated Press, Sept. 2008.

[18] A. Juels. Targeted Advertising ... And Privacy Too. In
Proceedings of the 2001 Conference on Topics in
Cryptology, pages 408–424, London, UK, 2001.
Springer-Verlag.

[19] A. Juels, S. Stamm, and M. Jakobsson. Combating
Click Fraud via Premium Clicks. In Proceedings of
16th USENIX Security Symposium (Security ’07),
pages 1–10, Boston, MA, 2007.

[20] B. Krishnamurthy and C. Wills. On the Leakage of
Personally Identifiable Information Via Online Social
Networks. In Proceedings of The Seconds ACM
SIGCOMM Workshop on Online Social Networks
(WOSN ’09), Barcelona, Spain, Aug. 2009.

[21] B. Krishnamurthy and C. E. Wills. Cat and Mouse:
Content Delivery Tradeoffs in Web Access. In
Proceedings of the 15th international conference on
World Wide Web (WWW ’06), Edinburgh, Scotland,
2006.

[22] R. M. Lukose and M. Lillibridge. Databank: An
Economics Based Privacy Preserving System for
Distributing Relevant Advertising and Content.
Technical Report HPL-2006-95, HP Laboratories, 2006.

[23] R. Miller. Keynote: Ad Networks Failed, Not News
Sites. http://tinyurl.com/ychd3rn, June 2009.

[24] R. Ostrovsky and W. E. S. III. A Survey of
Single-Database Private Information Retrieval:
Techniques and Applications. Public Key
Cryptography, 4450:393–411, 2007.

[25] K. Park, V. S. Pai, K.-W. Lee, and S. Calo. Securing
Web Service by Automatic Robot Detection. In
Proceedings of the 2006 USENIX Annual Technical
Conference, Boston, MA, 2006.

[26] H. Ringberg, B. Applebaum, M. J. Freedman,
M. Caesar, and J. Rexford. Collaborative,
Privacy-Preserving Data Aggregation at Scale.
Cryptology ePrint Archive, Report 2009/180, 2009.
http://eprint.iacr.org.

[27] The Eclipse Foundation. Jetty.
http://www.eclipse.org/jetty.

[28] Versaneo GmbH. pidCrypt - pidder’s JavaScript crypto
library. http://www.pidder.com/pidcrypt.

[29] S. D. Vries and R. V. Vohra. Combinatorial auctions:
A survey. INFORMS Journal on Computing,
15(3):284–309, 2003.

[30] P. R. Zimmermann. The Official PGP User’s Guide.
MIT Press, Cambridge, MA, 1995.

14

